

Wavelets and Sparse Signal Processing

Hongkai Xiong 熊红凯 http://min.sjtu.edu.cn

Department of Electronic Engineering Shanghai Jiao Tong University

Hongkai Xiong, distinguished professor

- Office: 1-309, No.1, SEIEE Bld.
- Email: xionghongkai@sjtu.edu.cn
- Web-page: http://min.sjtu.edu.cn

Wenrui Dai, associate professor

- Office: 1-304, No.1, SEIEE Bld.
- Email: daiwenrui@sjtu.edu.cn

Teaching Assistants:

- Hao Zhang
 Email: zhanghao341@sjtu.edu.cn
- Jiaqi Sun
 Email: jiaqisun@sjtu.edu.cn

Office hour:

- 1-304, NO.1, SEIEE Bld.
- 19:00-21:00, Thursday.

Part I - fundamentals

- ☐ Continuous time Fourier transform
- ☐ Discrete time Fourier transform
- ☐ Discrete Fourier transform
- □ Z transform

Part II – wavelets and sparse signal processing

- ☐ Time meets frequency
- Wavelet frames
- □ Wavelet zoom
- Wavelet bases
- Multiscale geometric analysis
- ☐ Lifting wavelet and filter banks
- Sparse representation
- Scattering transform and Convolutional Sparse Coding
- Graph signal processing

Text books and references

- Stéphane Mallat, A Wavelet Tour to Signal Processing, The Sparse Way, Third Edition, Elsevier, 2009
- Michael Elad, Sparse and Redundant Representations, From Theory to Applications in Signal and Image Processing, Springer, 2010
- Alan V. Oppenheim, Signals & Systems, Second Edition, Publishing House of Electronics Industry of China
- Website: http://min.sjtu.edu.cn/courses/wt.htm

Related Sources

- "Sparse and Redundant Representations and Their Applications in Signal and Image Processing"
 https://elad.cs.technion.ac.il/236862-course-webpage-winter-semester-2018-2019/
- "Wavelets in Signal Processing"
 http://www.ifp.illinois.edu/~minhdo/teaching/wavelets.html
- "Wavelets, Filter Banks and Applications" https://ocw.mit.edu/courses/mathematics/18-327-wavelets-filter-banks-and-applications-spring-2003/
- http://www.numerical-tours.com/

Requirements and grading

- Homework and attendance (20%)
- Projects (40%)
- Final Examination (40%)

Projects (report + source code)

Harmonic analysis

Multi-scale geometry analysis

Wavelet and Filter bank design

Compressive sensing

Sparse coding, representation, dictionary learning

Generalized source coding, and subband coding

Multidimensional signal processing

Other relevant topics

- Final Examination (online)
- 3 mandatories + 2 optionals (3 days)
- Theoretical analysis
- Algorithm implementations

Q & A

